利用数学归纳法证明"1x2² 2x3²"

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/14 14:16:05
利用数学归纳法证明"1x2² 2x3²"
用数学归纳法证明不等式

解题思路:用完归纳假设后,后面的项还要分组,用基本不等式或不等式的性质“放大”,技巧较大。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("htt

数学归纳法证明 < {(n+1)/2 }的n 次方

当n=1时,n!=1!=1=[(n+1)/2)]^n当n=2时,n!=2!=2

用数学归纳法证明, 

再问:谢谢你😊再问:太感动了😘再问:谢谢你再答:呵呵,不客气。。。

(1)用数学归纳法证明下列行列式 (2)利用递推公式,证明下列行列式

原行列式Dn=1+a11...1+011+a2...1+0......11...1+an=按第n列把行列式分拆1+a11...111+a2...1......所有行减第n行化成下三角11...1+1+

数学归纳法证明

解题思路:弄清和式的规律,才能弄清k到k+1的变化解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/

用数学归纳法证明不等式:1n

证明:(1)当n=2时,左边=12+13+14=1312>1,∴n=2时成立(2分)(2)假设当n=k(k≥2)时成立,即1k+1k+1+1k+2+…+1k2>1那么当n=k+1时,左边=1k+1+1

用数学归纳法证明不等式 2^n

原式等价于n再问:n+1

数学归纳法证明不等式

数学归纳法就是,①证明n=1时,不等式成立,②假设n=k时,不等式成立来证明n=k+1时不等式也成立.一般情况下,在证明第二步的时候,要充分利用n=k时不等式成立的条件,以n=k时的不等式为基础,进行

数学归纳法证明,求助用数学归纳法证明:[13^(2n)-1] Mod 168=0

当n=1时,13^(2n)-1=168,成立设当n=k时成立,即13^(2k)-1能够被168整除,则当n=k+1时,有13^(2k+2)-1=13^2kx169-1=13^2kx(168+1)-1=

用数学归纳法证明

解题思路:分析:由已知条件得到x2,x3,x4,x5,x6,猜想数列递减,再利用数学归纳法证明。解题过程:

困难的数学归纳法题利用数学归纳法,证明对于所有正整数n,(3n-1)(4^n)+1可被9整除

首先对于n=1,(3*1-1)*(4^1)+1=2*4+1=9可被9整除成立若对于n=k,可被9整除那么对n=k+1,=(12k+8)*4^k+1=(3k-1+9k+9)*4^k+1=9(k+1)*(

数学归纳法的证明题用数学归纳法证明:1 sin x+2 sin 2x+…+n sin nx=sin[(n+1)x]/4s

前面步骤省略设:1sin(x)+2sin(2x)+…+nsin(nx)=sin[(n+1)x]/[4sin^2(x/2)]-(n+1)cos[(2n+1)x/2]/[2sin(x/2)]则需要sin[

利用数学归纳法,证明对于所有正整数n, 2^(2n+1)-9n²+3n-2能被54整除.很急啊,谢谢了!

等于n时2^(2n+1)-9n²+3n-2=54t等于n+1时2^(2n+3)-9(n+1)²+3(n+1)-2=4(54t+9n²-3n+2)-9(n+1)²

用数学归纳法证明:1+12

证明:当n=1时,结论成立;假设n=k时,不等式成立;当n=k+1时,左边≥3k2k+1+1(k+1)2,下证:3k2k+1+1(k+1)2≥3(k+1)2(k+1)+1,作差得3k2k+1+1(k+

用数学归纳法证明:1

证明:(1)当n=1时,左边=12=1,右边=1×2×36=1,等式成立.(4分)(2)假设当n=k时,等式成立,即12+22+32+…+k2=k(k+1)(2k+1)6(6分)那么,当n=k+1时,

用数学归纳法证明“1+12

左边的特点:分母逐渐增加1,末项为12n−1;由n=k,末项为12k−1到n=k+1,末项为12k+1−1=12k−1+2k,∴应增加的项数为2k.故答案为2k.

利用数学归纳法证明(n∈N*):a^(n+1)+(a+1)^(2n-1)能被a^2+a+1整除

证明:(1)当n=1时,a^(n+1)+(a+1)^(2n-1)=2^2+a+1显然,a^(n+1)+(a+1)^(2n-1)能被a^2+a+1整除;(2)假设当n=k时,a^(k+1)+(a+1)^