如图所示,小球质量为m,在水平细绳和弹簧作用下处于静止状态

来源:学生作业帮助网 编辑:作业帮 时间:2024/08/08 04:32:15
如图所示,小球质量为m,在水平细绳和弹簧作用下处于静止状态
如图所示,质量为M的小车放在光滑的水平面上.小车上用细线悬吊一质量为m的小球,M>m.现用一力F1水平向右拉小球,使小球

首先对左边受力分析,对该系统:F1=(M+m)a.对小球,拉力T的竖直分力Tcosα=mg,水平方向:F1-Tsinα=ma,即Tsinα=Ma,tanα=Ma/mg.a=mgtanα/M对右面:F2

如图所示,支架质量为M,置于粗糙水平地面上,转轴O处有一长为L的轻杆,杆的另一端固定一个质量为m小球,使小球在竖直平面内

1.最高点时恰好支架对地面无压力杆子的拉力大小正好等于支架重力了F向心力=F杆子拉力+球重力mV^/L=Mg+mgV=√(M+m)gL/m)2.最低点时速度还是V=√(M+m)gL/m)向心力大小还是

如图所示,质量为M的框架放在水平地面上,一轻质弹簧上端固定在框架上,下端拴着一质量为m的小球,小球上下振动时,框架始终没

框架静止在地面上,当框架对地面的压力为零的瞬间,受到重力和弹簧的弹力,根据平衡条件,弹簧对框架的弹力向上,大小等于框架的重力Mg,故弹簧对小球有向下的弹力,大小也等于Mg;再对小球受力分析,受重力和弹

如图所示,支架质量为M,始终静止在水平地面上,转轴O处用长为l的线悬挂一个质量为m的小球.

机械能守恒求出小球到达最低点时的速度vmv^2/2=mgr设小球在最低点时受到绳子的拉力为T,则由向心力公式得T-mg=mv^2/rT=mg+2mg=3mg由牛顿第三定律得绳子给支架向下的拉力T'也是

如图所示,小车在水平路面上加速向右运动,一个质量为m的小球,用一根水平绳和一根

 主要是对牛顿第二定律的考查,列牛二定律水平和竖直方向的方程就可以了,水平:FobXsin30-Foa=ma竖直:FobXcos30-mg=0当Foa=0时,带入上式解得:a=g*tan30

物42.如图所示,在光滑水平面上停放着质量为m、装有光滑弧形槽的小车,一质量也为m的小球以水平初速度

根据动量守恒和能量守恒(1)在水平方向,从最初和最末的状态来看,这个过程动量守恒,能量(而且表现为动能,由于高度一样,所以势能没有变化)也守恒,其结果跟弹性碰撞是一样的.所以发生了速度替换.故:小车速

如图所示,质量为M的斜面体A放在粗糙的水平面上,用轻绳拴住质量为m的小球B

小球受三个力,重力,斜面的弹力N和拉力F.对力进行水平和竖直方向分解.有Nsin60+Fsin60=mgNsin30=Fsin30可知答案为AD

如图所示,质量为m、半径为R的小球,放在半径为2R、质量为2m的大空心球内.大球开始静止在光滑的水平面上.当小球从图示位

设小球滑到最低点所用的时间为t,发生的水平位移大小为R-x,大球的位移大小为x,取水平向左方向为正方向.则根据水平方向平均动量守恒得:m.v1-2m.v2=0即:mR−xt=2mxt解得:x=R3故选

如图所示,质量为M的框架放在水平地面上,一轻弹簧上端固定在框架上,下端栓一质量为m的小球,小球上下振动时,框架始终没有跳

弹簧,小球,框架,这是三个不同的部分了,他们之间的力,分析的时候要只对一个受力物体分析,小球可不会作用于到框架上的,分析框架的时候,对框架的施力物理只有两个,地球与弹簧,

如图所示,三个质量均为m的小球相互间距均为L,若B小球带电量为-q,B小球带电量为+q,在水平外力F作用下,欲使三个小球

题目是不是若B小球带电量为-q,C小球带电量为+q?从B球出发考虑,B球一定受一对平衡力.则A球必须带+q电量A球受力平衡则F=KQ^2/L^2-KQ^2/4L^2=3KQ^2/4KQ^2

如图所示,支架质量为4m,放置在粗糙水平地面上,转轴O处有一长为L的轻杆,杆的另一端固定一个质量为m的小球.现使小球在竖

(1)小球在最低点时,对支架分析,有:4mg+T=N,N=6mg,解得:T=2mg,对小球分析,根据牛顿第二定律得:T-mg=mv2L,解得:v=gL.(2)在最高点,根据牛顿第二定律得:T′+mg=

如图所示,一光滑的半径为R的半圆形轨道固定在水平面上,一个质量为m的小球...

如果是mg/cos30°,这就表示你对力的合成和分解理解的不够.因为按照你这分解,重力是对应的直角边,斜边才是向心力F(但实际上F仅仅是向心力的一部分而已,也就是说你给出的mg/cos30°仅仅是其中

如图所示,静止在水平面上的三角架的质量为M,它中间用两根质量不计的轻弹簧连着一质量为m的小球.当小球上下振动,三角架对水

以M为研究对象,M受重力和地面的支持力以及弹簧对M向上的作用力F:根据平衡方程,得:N+F=Mg,当方形框架对水平面的压力为零的时刻,即N=0时,F=Mg以m为研究对象,有根据牛顿第二定律:ma=mg

如图所示,质量为M的框架放在水平地面上,一轻弹簧上端固定在框架上,下端栓一质量为m的小球,小球上下振动时,框架始终没有跳

框架静止在地面上,当框架对地面的压力为零的瞬间,受到重力和弹簧的弹力,根据平衡条件,弹簧对框架的弹力向上,大小等于框架的重力Mg,故弹簧对小球有向下的弹力,大小也等于Mg;再对小球受力分析,受重力和弹

如图所示质量为m的木箱放在水平面上木箱中的立杆上套着一个质量为m的小球,开始时小球在杆的顶端,由静

3/2mg因为球的加速度为1\2g也即是,杆对球的摩擦力为1/2mg故杆受到球给的向下的力也是1/2mg又箱子重mg顾给地面的压力为mg+1/2mg=3/2mg

如图所示,质量为m的小球,用长为L的轻绳悬挂于O点,小球位于P点小球在水平力F作用下

那个不知道对不对啊(1)W=FLsinø(2)机械能守恒:mg(L-Lcosø)=1/2mv^2

(2013•汕头一模)如图所示,一质量为m的小球C用轻绳悬挂在O点.小球下方有一质量为2m的平板车B静止在光滑水平地面上

(1)A碰C前与平板车速度达到相等,由动量守恒定律得mv0=(m+2m)v′A碰C后,C以速度v′开始做完整的圆周运动,由机械能守恒定律得12mv′2=mg•2l+12mv″2小球经过最高点时,有mg