实对称矩阵A的任一个k重特征根λ一定有

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/28 01:35:16
实对称矩阵A的任一个k重特征根λ一定有
线性代数证明题.设B为任一n阶方阵,A为n阶实对称矩阵,证明BтAB为对称矩阵.

(BтAB)т=(B)т(A)т(Bт)т=BтAтB=BтAB,不就是对称矩阵么?再问:思路是什么啊。为什么一开始要求BтAB的转置呢。你的证明我看懂了。再答:什么是对称矩阵?!对称矩阵不就是证明转

设3阶实对称矩阵A的特征值分别是1,2,-2,a=(1,-1,1)'是A属于特征值1的一个特征向量,如何求出另外2个特征

很简单,实对称矩阵的不同的特征值的特征向量正交,也就是说你假设另外两个特征向量分别为(x1,x2,x3)和(y1,y2,y3),则1*x1+-1*x2+1*x3=0,1*y1+-1*y2+1*y3=0

对称三对角矩阵的性质证明:若一个实对称三对角矩阵有k重特征值,则它至少有k-1个次对角元为0.

首先实对称阵相似于对角阵且特征值为实数只需证明(1)次对角元全非0时所有特征值2,2不同就行了这是因为我们可以把原矩阵分块成一个对角阵和一个实对称三对角矩阵(设阶数分别为s,t)使得这个子阵的的次对角

请问:实对称矩阵K重特征根必定有K个线性无关特征向量(解)的结论如何证明?

这种基本结论都不会证很不应该先取A的一个单位特征向量x,以x为第一列生成一个酉阵U,那么U^HAU是分块对角Hermite阵,归纳即得Hermite矩阵的谱分解对于实对称矩阵,因为特征向量可以取成实的

设A为N阶实矩阵,且有N个正交的特征向量,证明:1A为实对称矩阵;2存在实数k及实对称矩阵B,A+kE=B^2

【1】令P,Lambda分别为特征矩阵和特征值矩阵,则.【2】因为P是个正交矩阵,所以PP^-1是个常数,

证明任一方阵可以写成一个对称矩阵与一个反对称矩阵的和

证明:为便于书写,用A'表示A的转置矩阵:令B=(A+A')/2,C=(A-A')/2,则A=B+C其中B是对称矩阵(B'=B)C是反对称矩阵(C'=-C)证毕

对称矩阵a为正定矩阵,可以直接说a为实对称矩阵吗?对称矩阵,正定矩阵,实对称矩阵之间的关系是什么呢?

线性代数考虑的范围是实数正定的概念来源于二次型故一般说来正定是实对称矩阵(线性代数范围)(ABC)^T=C^TB^TA^T

证明实对称矩阵行列式的值等于其特征根的乘积?

不必加条件"实对称矩阵"A的特征多项式|A-λE|=(λ1-λ)(λ2-λ).(λn-λ)λ=0时有|A|=λ1λ2...λn即A的行列式等于其全部特征值之积(重根按重数计)

怎么证明实对称矩阵k重特征值必然有k个特征向量?

http://zhidao.baidu.com/question/517758517.html

证明:两个n级实对称矩阵A,B相似的充要条件是它们有相同的特征多项式

实对称矩阵一定可以相似对角化,并且相似于矩阵diag(λ1,λ2,…,λn),AB相似则AB分别相似于其特征值构成的对角矩阵,两对角矩阵相似=>其对角线上的元素

特征矩阵是正交矩阵的矩阵是不是一定是实对称矩阵?

我记得应该是特征向量正交和规范矩阵是充要关系.不一定是实对称.当然反过来是对的(谱分解定理)

线性代数问题 一个矩阵若可对角化 那么 它的一个特征值若为k重特征根 则对应k个线性无关的特征向量

是的,而且在所有不同的特征值的所有线性无关的特征向量可以作为线性空间的一个基,这个基下矩阵可化为对角阵

对于实对称矩阵或可相似对角化的矩阵,其秩就是非零特征值的个数(其中n重根以n个记),如果0不是该矩阵的特征值,此矩阵满秩

设原矩阵为A,相似对角矩阵为B,则存在可逆矩阵P,使得:B=P^(-1)·A·P由于乘以一个可逆矩阵,矩阵的秩不变,∴ R(B)=R(A)如果0不是该矩阵的特征值,则R(A)=R(B)=n所

任一实对称矩阵必合同于一个对角矩阵怎么理解

n阶实对称矩阵有n个特征根(可能会有重根),它必然与一个对角矩阵相似,在不计对角矩阵主对角线上元素(特征根)的次序的情况下,这个对角矩阵是唯一的;在考虑主对角线上元素的次序的情况下,对角矩阵不唯一.

设A是一个3阶实对称矩阵 ,证明A的特征根都是实根

如果λ是A的特征值,x是其特征向量,即Ax=λx左乘x^H(x的共轭转置)得到λ=(x^HAx)/(x^Hx),分子和分母都是实数

设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有( )

C再问:no是A再答:sorryA可对角化时是k=3,A不可对角化时k≤3