已知三角形ABC的三条中线AF,BD,CE相交

来源:学生作业帮助网 编辑:作业帮 时间:2024/08/17 20:13:41
已知三角形ABC的三条中线AF,BD,CE相交
如何证明三角形的三条中线交于一点

已知:△ABC中,AX,BY,CZ分别是BC,AC,AB边上的中线,求证:AX,BY,CZ相交于一点G,并且AG∶GX=2∶1X,Y分别是BC,AC的中点,所以XY=DE,所以,四边形DEXY为平行四

证明:三角形的三条中线交于一点.

用向量法证明三角形ABC的三条中线交于一点P,并且对任意一点O有向量OP=1/3(向量OA+向量OB+OC向量)注意:要求用向量法,不使用坐标假设两条中线AD,BE交与P点连接CP,取AB中点F连接P

如图,已画出三角形ABC的三条中线,证明:图中被中线所分的六个小三角形面积相等.(并写出理由)

AC的中点为E.S(ABO)=S(ACO)S(AHO)=S(ABO)/2S(AOE)=S(AOC)/2S(AHO)=S(AOE)同理S(BHO)=S(BDO)S(CDO)=S(CEO)S(AHO)=S

三角形ABC中,三条中线等于3、4、5.求三角形的面积.

三条中线345面积是8设三角形ABC,三条中线:AD、BE、CF交于O,且长分别为3、4、5.延长OD到G,使OD=DG.连接BG.然后自己算OG=2OB=8/3BG=10/3所以三角形BOG为直角三

已知三角形的三边长分别是6,8和10,求这个三角形三条中线的长

6²+8²=10²所以是直角三角形假设AB=6,BC=8,AC=10D是AB中点则BD=6/2=3直角三角形BCD中CD²=BC²+BD²=

已知AE,BF,CD是三角形ABC的三条中线,且相交于点G,求证GE:GA=GF:GB=DG:GC=1:2

连结EF,则EF‖AB,且EF=0.5AB,又∵EF‖AB,∴△EFG∽△ABG,有GE:GA=GF:GB=EF:AB=1:2,同理可证,DG:GC=1:2,∴GE:GA=GF:GB=DG:GC=1:

三角形ABC的三条中线AD,BE,CF长分别是5.12.13求三角形ABC的面积 图见

考虑到三条中线的长为一组勾股数.现在设法将三条线挪动到一个三角形内.(通常有中线都这么处理)延长BE至P(或者CP平行AB,AP平行BC)总之让ABCP是平行四边形.取CP边上的中点Q,连接AQ,DQ

若三角形ABC的三条中线为3,4,5,三角形ABC的面积是多少?

1/2*3*4*3/2=9要图的话一会画给你再问:图片,谢谢!再答:算错了,应该是8三角形面积AOB=AOC=BOC同样小三角形也是相等的,一共6个AF和CD垂直DO:OC=1:2FO:OA=1;2得

三角形的三条中线的交点叫作___

重心内心(即内切圆圆心)性质:到三边距离相等外心(即外接圆圆心)性质:到三定点距离相等

已知,如图,在三角形ABC中,AB等于AC,AE是BC边上的中线.AF是三角形CAD的角平线.求证AE垂直于AF.

证明:AB=AC,AE为中线,则:∠BAE=∠CAE=(1/2)∠BAC;又∠CAF=(1/2)∠CAD.故:∠CAE+∠CAF=(1/2)(∠BAC+∠CAD)=(1/2)*180度=90度.所以,

已知三角形ABC的面积是12,求三角形ABC三条中线所围成的三角形的面积

设三角形ABC面积为s,所围成的三角形外侧的三个小三角形的面积分别为s1,s2,s3因为三个小三角形均与三角形ABC相似,且等于对应边之比的平方.所以有s1/s=1/4s2/s=1/4s2/s=1/4

如图,已知 AD、BE、CF是三角形ABC的三条中线,EG平行AB,FG平行BE,问AD与CG平行吗?说明理由

AD与CG平行.理由如下:∵EG∥AB,FG∥BE∴四边形BEGF是平行四边形∴EG=BF∵ D、E、F分别是BC、AC、AB的中点∴DE=BF,DE∥AB∴D、E、G在同一直线上,DE=E

已知三角形abc的三条中线,AD,BE,CF相交于点G,连接DE交CF于点N,M是BE中点,三角形ABC面积是S

1.由于G点是3条中线的交点,所以DG=1/3AD所以三角形GBC的面积=三角形ABC面积的1/3.2.因为CF是中线,所以:S△CBF=1/2S△ABC又因为CD=1/2CB,DN∥BF所以DN为三

已知三角形的三条中线的长度,能否唯一确定一个三角形

根据中线公式,已知三角形的三条中线的长度,能唯一确定一个三角形再问:那已知三角形的三条高,也能唯一确定一个三角形?再答:根据海伦公式,已知三角形的三条高,也能唯一确定一个三角形

已知三角形ABC三条边长分别是18,24,30则最长边上的中线是多少

:∵30²=24²+18²∴该三角形是直角三角形∴最长边的中线长是斜边30的一半为15

AD,BE,CF是三角形ABC的三条中线,相交于点O,S三角形BDO=1,求S三角形ABC.

根据重心性质,∵AO=2OD,∴S△ABO=2S△BDO=2,(高相同),∵BD=CD,∴S△BDO=S△ODC=1,同理,S△AOC=2S△ODC=2,∴S△ABC=1+1+2+2=6.

如图1-10,AD.BE.CF是三角形ABC的三条中线,相交于点O,S三角形BDO=1,求S三角形ABC

根据重心性质,∵AO=2OD,∴S△ABO=2S△BDO=2,(高相同),∵BD=CD,∴S△BDO=S△ODC=1,同理,S△AOC=2S△ODC=2,∴S△ABC=1+1+2+2=6.

AD,BE,CF是三角形ABC的三条中线,三角形ABC周长与三角形DEF周长的比是?

连结DE、EF、DF∵AD、BE、CF是三角形的三条中线∴点D、E、F分别是边BC、AC、AB的中点∴DE、DF、EF分别是边AB、AC、BC的中位线∴DE=1/2ABDF=1/2ACEF=1/2BC