线性变换的不变子空间的应用

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/07 00:22:31
线性变换的不变子空间的应用
线性代数的线性变换

用T表示线性变换,则T(a1)=(1,1,0)=x1a1+x2a2+x3a3,下面解方程x1+x2+x3=1x2+x3=1x3=0所以x1=0,x2=1,x3=0故T(a1)=a2类似T(a2)=(2

线性代数 线性空间与线性变换的题目

题目有问题T不是线性变换再问:我也觉得题目有问题没法做谢谢啦

请问同济四版的线性代数第六章“线性空间与线性变换”考吗?

看看09年考研大纲.你考数几,数一考查看原帖

七、设W1和W2是n维向量空间V的两个子空间,且维数之和为n,证明:存在V上的线性变换σ,使ker(σ)=W1,Im(σ

设ε1……εr和α1……αn-r分别是W1和W2的一组基,可知ε1……εr可扩充为V的一组基,设扩充后这组基变为ε1……εn,则对于V中的任意一个元素ζ=k1ε1+……+knεn,设变换σ把它变换为η

设σ是欧式空间V的一个线性变换,证明:如果σ是正交变换,那么σ保持任意两个向量的夹角不变,反之不然.

正交变换满足σ^Tσ是恒等映射.因此对任意的两个非零向量a,b,有==,即正交变换保持内积不变,因此||a||^2==.长度不变.于是a与b的夹角cos(theta)=/【||a||*||b||】在正

n阶矩阵的线性变换线性变换t(A)=A',A为n阶方阵,那么t的特征值怎么算呢?属于特征值1的特征子空间的维数和一组基怎

属于特征值1的特征子空间是所有对称矩阵所成的空间,维数n(n+1)/2,基自己求吧,结果不唯一再问:那维数是怎么算的呢?再答:写出基就知道了再问:可是题目讲t的特征值为-1和1是怎么得到的呢?麻烦写一

求大神解答三道高代题,有关线性空间和线性变换的~

36.φ(φ(a))=φ(φ(a1+a2))=φ(a1)=a1,而φ(a)=φ(a1+a2)=a1,所以φφ=φ.Kerφ=V2,Imφ=V1.37.(1)a∈Vλ0,则φ(a)=λ0a,于是ψ(φ(

证明是线性空间设V是数域F上的线性空间,W是V的一个子空间,U={σ是V的一个线性变换|σ(V)是W的子集}.证明:U关

零变化属于U所以U分非空任意σ1σ2属于U那么对于任意x属于V有σ1(x)=k1xσ2(x)=k2x所以(σ1+σ2)(x)=(k1+k2)x所以(σ1+σ2)属于U任意σ1属于Um属于F对于任意x属

线性空间分解为不变子空间直和的证明

"及"行那个等式两边乘(A-λiE)^ri由fi的定义得第一个等号由f是A的零化多项式得第二个等号再问:第二个等号我清楚,就是第一个等号没想出来。为什么由fi的定义得第一个等号?能说的更详细一些吗?(

试求线性空间的一个线性变换,满足

[121;0-10;-11-1]*[121;-110;-31-1]^-1=100-12-12-63即为所求.再问:请问矩阵除法的具体方法是怎么样的,结果是怎么得到的?再答:求BA^-1的方法:将矩阵(

高等代数:研究一个线性变换的不变子空间,具体作用是什么?

2个作用1是可以把这个线性变换限制在子空间中成为子空间的变换2是可以诱导为模掉此子空间的商空间的变换.最简单的应用比如复线性空间中2课交换的线性变换可同时上三角化.

关于线性代数线性空间中线性变换的问题

(1)必要性:以σ的特征向量为基,那么σ和τ的表示矩阵都是对角阵充分性:若σ(x)=λx,x≠0,那么σ(τ(x))=τ(σ(x))=λτ(x),即τ(x)也是σ关于λ的特征向量,所以存在常数μ使得τ

空间向量的应用

解题思路:连AD,知AD⊥PC(因为PAC是等边三角形,切且O为PC中点)解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi

刘老师,您好,向您请教求线性子空间的维,基及线性变换的问题,

(1)因为实数上上三角矩阵的和与数乘仍是上三角矩阵所以U(略)是子空间(2)维数是3,A1=[1,0;00],A2=[0,1;0,0],A3=[0,0;0,1]线性无关且任一U中矩阵可由其线性表示(3

空间向量法的应用和特点 最好举例子

空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性.如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平

设V是数域P上的n维线性空间,W是V的子空间,证明:W是某个线性变换的核.

设V是数域P上的n维线性空间,W是V的一个s维子空间,那么,取定W的一个基:E1,E2,...,Es,将W的这个基扩充为V的一个基,记为,E1,E2,...,Es,Es+1,...,En现在我们构造一

设A为数域P上的线性空间V的线性变换,证明:

用反证法.若λ=0是特征值,ξ是对应的特征向量,那么:   Aξ=λξ=0于是,一方面:A^(-1)[Aξ]=A^(-1)[0]=0另一方面:A^(-1)[Aξ]=[A^

线性代数的线性变换问题

做法没有问题.你理解的是把Aε1,A(kε2),Aε3表示为ε1,ε2,ε3的线性组合,而一个线性变换A在某一组基ξ1,ξ2,ξ3下的矩阵B,指的是A(ξ1,ξ2,ξ3)=(ξ1,ξ2,ξ3)B,就是