若n阶矩阵A满足2A2-3A 4E=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/06 14:54:56
若n阶矩阵A满足2A2-3A 4E=0
已知A是n阶矩阵,且满足方程A2+2A=0, 证明A的特征值只能是0或-2.

证明:设a是A的特征值,则a^2+2a是A^2+2A的特征值而A^2+2A=0,零矩阵的特征值只能是0所以a^2+2a=0所以a(a+2)=0所以a=0或a=-2即A的特征值只能是0或-2.

设A为n阶实对称矩阵,且满足A3+A2+A=3E,证明A是正定矩阵.

假设 λ 为A的特征值,因为A3+A2+A=3E,所以 λ3+λ2+λ-3=0.即 (λ3-1)+(λ2-1)+(λ-1)=0,得(λ-1)(λ2+2λ+3)=0.解得,

设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2-a3,向量b=a1+a2+a3+a4,

=a1+a2+a3+a4得到特解为(1,1,1,1)0=a1-2a2+a3得到齐次解(1,-2,1,0)(只有这一个,因为A得秩是3,齐次解只能有4-3=1个)所以通解为(1,1,1,1)+α(1,-

已知n阶矩阵A满足A2-3A+2I=0,其中I是n阶单位矩阵,且A的特征值全为1,求证A=I

显然x^2-3x+2是A的一个零化多项式,无重根,这说明A的极小多项式无重根,因此A可对角化.而A的特征值全为1,说明A相似于单位阵E.所以A=P^{-1}EP=E

如n阶矩阵A满足A2=A,证明:A的特征值只能为0或-1

题目错了,应该是0或1.设Ax=λx,x是非零向量,则0=(A^2-A)x=(λ^2-λ)x,于是λ^2-λ=0,从而λ=0或1.我看到你连续问了好几道基本的问题,建议你好好看看书,这些已经是最简单的

设数列{an}满足:a1+a2/2+a3/3+a4/4……+an/n=An+B,其中A、B为常数.数列{an}是否为等差

记Sn=a1+a2/2+a3/3+a4/4……+an/n=An+B,则a1=S1=A+B,当n>=2时,an/n=Sn-S(下标n-1)=An+B-[A(n-1)+B]=A,an=An,所以,an={

设n阶方阵A满足A2-5A+5E=O,证明矩阵A-2E可逆,并求其逆矩阵

A²-5A+6E=E(A-2E)(A-3E)=E所以A-2E可逆其逆矩阵为A-3E再问:(A-2E)(A-3E)=A²-5AE+6E^2。不等于A²-5A+6E=E再答:

设n阶方阵A满足A2-5A+5E=O,证明矩阵A-2E可逆,并求其逆矩阵.

A2-5A+5E=A2-5A+6E-E=(A-2E)(A-3E)-E=O(A-2E)(A-3E)=E矩阵A-2E可逆,其逆矩阵=A-3E

如果n阶矩阵A满足A2=A,则称A是幂等矩阵.试证幂等矩阵的特征值只能是0或1.

设λ是A的特征值,所以Aα=λα.α≠0是对应的特征向量.上式两边左乘上A,得到;(A^2)α=Aλα=λAα=(λ^2)α因为A^2=A,所以(A^2)α=Aα所以(λ^2)α=λα[(λ^2)-λ

已知数列an满足a1=1,an=a1+2a2+3a3+4a4+.(n-1)a(n-1),求通项an

an=a1+2a2+……+(n-2)a(n-2)+na(n-1)-a(n-1)=na(n-1)[n>=3]所以an/a(n-1)=n……a3/a2=3累乘得an/a2=n*(n-1)……3=n!/2(

若n阶矩阵A满足A^2-A+E=0,证明A为非奇异矩阵

因为A^2-A+E=0所以A(A-E)=-E所以A可逆,且A^-1=-(A-E)=E-A

27.设n阶矩阵A满足A2=A,证明E-2A可逆,且(E-2A)-1=E-2A.

要证明E-2A可逆我们可以假设其可逆,并设其逆为aE+bA则(E-2A)(aE+bA)=E那么aE+(b-2a)A-2bA^2=E又A^2=A那么(a-1)E-(b+2a)A=0所以a-1=0,b+2

设n阶矩阵A满足A2+3A-2E=0.证明A可逆,并且求A的逆矩阵.

A²+3A-2E=0,所以A²+3A=2E,即A(A+3E)=2E,于是A(A/2+3E/2)=E,显然A为n阶方阵,而A和A/2+3E/2是同阶方阵,而两者相乘为E,所以由逆矩阵

设A为n阶矩阵,满足A2=A,设A为n阶矩阵,满足A2=A,试证:r(A)+r(A+I)=n

(结论应该是rank(A)+rank(A-I)=n,否则是错的.例:取A=I,则A^2=I=A,但rank(A)+rank(A+I)=rank(I)+rank(2I)=n+n=2n)证法一:令U={x

设矩阵A=[a1.a2.a3.a4],其中a2.a3.a4线性无关,a1=2a3-3a4.向量b=a1+2a2+3a3+

设x=(x1,x2,x3,x4)',首先考虑对应的齐次方程Ax=0,显然r(A)=3,所以基础解系仅含一个解,而方程Ax=0即x1a1+x2a2+x3a3+x4a4=0显然有一个解是(1,0,-2,3

证明对于n阶矩阵A,若R(A)=n,则R(A2)=n

(A)=n,说明矩阵A时可逆矩阵,因此A可以写成一系列初等矩阵的乘积,设A=p1*p2ps,相当于对矩阵A做了一系列的初等列变换,而初等列变换不改变矩阵的秩,因此r(A*A)=r(A)其实还可以简单点

设矩阵A=(a1,a2,a3,a4)其中a2,a3,a4线性无关,a1=2a2-a3,向量b=a1+a2+a3+a4,求

先用已知向量的列向量写出矩阵1011100101110101再利用初等行变换第一行乘以-1加到第二行101100-1001110101再利用初等行变换第三行乘以-1加到第四行101100-100111