设A^k=0(k为正整数),证明:

来源:学生作业帮助网 编辑:作业帮 时间:2024/06/30 17:51:58
设A^k=0(k为正整数),证明:
设k为正整数,使得根下k的平方-2004k也是一个正整数,求k

令根号下k*k-2004k=m,有:k*k-2004k-m*m=0,解得k=1002+根号下m*m+1002*1002,再令根号下m*m+1002*1002=n,有:n*n-m*m=1002*1002

设A为n阶方阵,且A^k=O(k为正整数)求证(I-A)^-1=I+A+A^2+A^3+...A^K-1

A^k=O.则A≠II-A^k=(I-A)*(I+A+A^2+A^3+...A^K-1)而A^k=O则(I-A)*(I+A+A^2+A^3+...A^K-1)=I则由可逆矩阵A*A^(-1)=A^(-

设A为n阶方阵,且A^k=0(k为正整数),则( ).

n阶方阵在复数域上有几个特征值呢?一定是n个,因为特征多项式|aE-A|是关于a的n次多项式,必有n个根.总之,计入复根,则A必有n个特征值.接下来如果特征值是a,那么由定义定有AX=aX于是a^kX

设A为n阶方阵,且A的k次幂等于0矩阵,(k为正整数),则() (A)A=0 (B)A有一个不为0的特征值

A的k次幂等于0矩阵指某个正整数kA^k=0设A的特征值λ则:Ax=λx(x≠0为特征向量)A^(k)x=0=λ^(k)x=》λ=0

证明题 设方阵A满足A的k次方等於0 对某个正整数k成立 证明:A的特征值一定为0

证明:设λ是A的特征值则λ^k是A^k的特征值(这是定理)而A^k=0,零矩阵的特征值只能是0所以λ^k=0所以λ=0即A的特征值一定为0.

设K为整数,方程kx=4-X的解为正整数,则k的值等于

kx=4-xkx+x=4(k+1)x=4∵4=1*4=4*1=2*2又∵原方程的解为正整数∴就有以下三种可能:1.x=1,k+1=4k=32.x=4,k+1=1k=03.x=2,k+1=2k=1∴当原

设A是n阶非0矩阵,如果存在一正整数k使得A^k=0,证明A不可能相似于对角矩阵.

假设A相似于对角矩阵Λ,则由相似的定义有A=P^(-1)ΛP,P可逆所以A^k=(P^(-1)ΛP)^k=P^(-1)Λ^k*P=O所以Λ^k=O即Λ=O从而A=P^(-1)ΛP=O与A是n阶非0矩阵

设A为n阶矩阵,且A不是零矩阵,且存在正整数k≥2,使A^k=0,证明:E-A可逆,且(E-A)=E+A+A^2+……A

由性质直接证明因为(E-A)(E+A+A^2+……+A^(k-1))=E+A+A^2+……+A^(k-1)-A-A^2-……-A^(k-1)-A^k=E-A^k=E所以E-A可逆,且(E-A)^(-1

A、B喂n阶方阵,设A~B,证明:A^k~B^k(k为正整数)

因为A~B设B=PAP-1则B^k=(PAP-1)^k=(PAP-1)(PAP-1)...(PAP-1)=PA(P-1P)A(P-1P)...AP-1=P(A^K)P-1所以A^k~B^k

数列与不等式证明1题设n为给定的正整数,数列a(0),a(1),...,a(n)定义为a(0)=0.5,a(k)=a(k

先说明,以下涉及的K都是0到n-1的整数.由已知条件知an>a(n-1)>...>a1>a0,于是a(k+1)=ak+1/n*ak^2<ak+1/n*ak*a(k+1),1/ak-1/a(k+1)<1

a,b,k为大于2的正整数a^k mod (k+1)=n;b^k mod (k+1)=m; 证明 n*m mod (k+

题目条件:a^k=n(modk+1)b^k=m(modk+1)m*n=1(modk+1)所以(ab)^k=1(modk+1)(1)记k+1的欧拉函数为ψ(k+1),那么在(1,ψ(k+1))内,有且仅

设A是n阶矩阵,若存在正整数k,使A的k次方为o矩阵,求证矩阵A的特征值为0

设a是A的特征值则a^k是A^k的特征值(定理)而A^k=0,零矩阵的特征值只能是0所以a^k=0所以a=0即A的特征值只能是0.

代数、数论1.设 k,m,n为正整数,k=m^2+n^2/mn+1,证明k是平方数2.设 k,m,n为正整数,k=m+1

我想了蛮久.觉得第一问是比较难的,当然我认为你忘记打括号了.因为k是整数,那么n^/(mn)是整数,得出m|n.这里只要取m=n=1,则k=3不是平方数.如果不是,而是n^/(nm+1)那么有(mn+

设A为n阶方阵,对其正整数k>1,A^k=0,证明:(E-A)^(-1)=E+A+A^2+,+A^(k-1)

由于(E+A+A^2+,+A^(k-1))(E-A)=(E+A+...+,+A^(k-1))-(A+...+,+A^k)=E-A^k=E(注意那个式子的抵消规律)所以命题成立

一道线性代数题 设A为正定矩阵,证明:A^k 也是正定矩阵(k为正整数)

若A为正定矩阵的充要条件是A可以分解为可逆矩阵P的转置与P的乘积,也就是说A=P'P我们看充分性,A‘=(P'P)’=P‘P,所以A对称.对称矩阵A=P'IP,所以A和I合同,这也就是说A正定.必要性

设A为n阶矩阵 存在正整数k 使得A的k次方等于O 证明:A不可逆

根据|AB|=|A||B|得到|A^k|=|A|^k=0所以|A|=0,所以不可逆

设矩阵A^k=0矩阵(k为正整数),证明(E-A)^(-1)=E+A+A^2+...+A^(k-1)

证明:因为A^k=0所以(E-A)(E+A+A^2+...+A^(k-1))=E+A+A^2+...+A^(k-1)-A-A^2-...-A^(k-1)-A^k=E-A^k=E所以E-A可逆,且(E-

线性代数一个证明题设A^k=o (k为正整数),证明:(E-A)^-1=E+A+A^2+……+A^k-1

(E-A)(E+A+A^2+……+A^k-1)=E-A^k=E所以,(E-A)^-1=E+A+A^2+……+A^k(-1)再问:nwng能不能多写点呀详细一下谢谢虽然我看懂了;老师不让写这么少再答:这

设A是n阶矩阵,若存在正整数k,使线性方程组A^kα=0有解向量,且A^(k-1)α≠0

A^(k+1)α=A(A^kα)=A0=0其余类似A^(k+i)=A^iA^kα=A^i0=0.若A^(k-i)α=0,i>=2则A^(k-1)α=A^(i-1)A^(k-i)α=A^(i-1)0=0

设直线y=kx+k-1和直线y=(k+1)x+k(k是正整数)及x轴围成的三角形面积为Sk,

答:两条直线的交点,kx+k-1=(k+1)x+k,得到x=-1,代入原式得到y=-1,即交点为(-1,-1),因为是与x轴所围面积,所以三角形的高恒为1,直线y=kx+-1与x轴的交点,kx+k-1