设f(x)在[0,x]上可导,且f(0)=0,试证:至少存在一点

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/26 00:11:26
设f(x)在[0,x]上可导,且f(0)=0,试证:至少存在一点
设f(x)在[a,b]上有二阶导数,且f''(x)>0,证明:函数F(x)=[f(x)-f(a)]/(x-a) 在(a,

F'={f'(x)(x-a)-[f(x)-f(a)]}/(x-a)^2原命题等价于证f'(x)(x-a)-[f(x)-f(a)]>=0G=f'(x)(x-a)-[f(x)-f(a)],a0a再问:帅哟

设f(x)在x=0处连续,且lim(x趋于0)f(x)/x存在,证明,f(x)在x=0处可导

lim(x→0)f(x)/x存在说明x→0,limf(x)=f(0)=0所以limf(x)/x=lim[f(x)-f(0)]/x=f'(0)所以在x=0处可导

设f(x)在[a,b]二阶可导,且f''(x)

这也就是所谓的Hadamard不等式得一边,

一道高数题,设函数f(x)在[0,+∞)上连续,且f(x)=x(e^-x)+(e^x)∫(0,1) f(x)dx,则f(

很高兴为您解答,liamqy为您答疑解惑如果本题有什么不明白可以追问,再问:l应为含x的函数。怎么能提到积分号外来呀?再答:是个常数,积分是常数区域,,

设f(x)在[a,b]上二阶可导,且f''(x)>0,证明:函数F(x)=(f(x)-f(a))/(x-a)在(a,b]

我的证明方法不太好,不过凑合能证出来.由中值定理,F(x)=(f(x)-f(a))/(x-a)=f‘(c)c∈【a,x】对任意x1>x,有(f(x1)-f(x))/(x1-x)=f'(c1)c1∈【x

设f在[a,b]上可导,|f'(x)|

令F(x)=∫(a,x)f(t)dt,则知F可导且F'(x)=f(x),且F(a)=F(b)=0.由中值定理知道存在a

设函数f(X)定义在(0,+∞)上,f(1)=0,导数f'(x)=1/x,g(x)=f(x)+f'(x) .

f'(x)=1/x所以f(x)=lnx+cf(1)=0c=0f(x)=lnxg(x)=lnx+1/x(x>0)g(1/x)=x-lnx(x>0)g(x)-g(1/x)=2lnx+1/x-x另F(x)=

设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f'(x)=1/x,g(x)=f(x)+f'(x).

证明:假设存在x0>0,使|g(x)-g(x0)|<1/x成立,即对任意x>0,有Inx<g(x0)<Inx+2/x,(*)但对上述x0,取x1=eg(x0)时,有Inx1=g(x0),这与(*)左边

设f(x),g(x)均可导,证明在f(x)的任意两个零点之间,必有f'(x)+g'(x)f(x)=0的实根

构造罕数F(x)=f(x)*e^g(x).可知若f(a)=f(b),F(a)=F(b),那么ab之间必存在一点c使得F'(c)=0.对F(x)求导即可得到题目的结果.

设f(x)在区间[0,1]上可导,f(0)=0,0

在[0,1]上,因为f'(x)>=0,同时f(0)=0,==>f(x)>=0设g(t)=2∫(0,t)f(x)dx-f^2(t),0=0,()所以h(t)>=0对一切0

设函数f(x)在[0,1]上可导,且0

令F(x)=f(x)-1,F(0)0,F(x)在[0,1]上可导=>连续,故至少在(0,1)内有一点ξ,使得F(ξ)=0,即f(ξ)=ξ.下面用反证法证明ξ只有一个.假设存在ξ1,ξ2∈(0,1),F

一道高数证明题,设函数f(x)在[0,1]上可导,且|f'(x)|

...楼上是懒得写吧,这个确实挺简单的,但写起来很麻烦废话不多说,原式=|∑[(∫(i-1/n,i/n)f(x)dx-(1/n)f(i/n)]|.(i=1,2,3,...n)利用积分中值定理∫(i-1

设随机变量X的分布函数F(x)在x

E(X)=2随机变量X的分布函数F(x)在x

设函数f(x)定义域在(0,+∞)上,f(1)=0导函数f'(x)=1/x,g(x)=f(x)+f'(x)

暂时弄出了前两个问,不知道对不对.(1)因为f‘(x)=1/x所以f(x)=lnx+c又因为f(1)=ln1+c=0所以c=0所以g(x)=lnx+1/x令g’(x)=1/x-1/(x的平方)=0得x

设函数f(x)在闭区间[0,1]上可导,且f(0)×f(1)

题目错了吧 应该是证明,2f(a)+af'(a)=f'(a) 如下图: 再问:我书上写的是等于0啊再答:不好意思啊,想成另一题了,重新构造一个函数即可,方

设函数f(x)在(a,+∞ )上可导,且lim(x->+∞ )(f(x)+f'(x))=0,证明:lim(x->+∞ )

证明:∵lim(f(x)+f'(x))=0∴对任意正数ε>0,存在一个与之有关的正数M(x),使得当x>M时-ε

设函数f(x)二阶可导,f'(x)>0,f''(x)0时,在x点处有()

答案是A,这个题目要用到微分的定义、拉格朗日中值定理、函数的单调性等知识,属于有一定综合性的题目,具体解答见图片:

设函数f(x)在R上可导,且对任意x∈R有|f‘(x)|

可导——连续——有界.F(x)=f(x)-x求导可知F(x)单调递减,F(-无穷)>0F(+无穷)

设f(x)在0到正无穷大上可导,f(x)>0,limf(x)=1(x趋向正无穷大),若lim[f(x+nx)/f(x)]

证:由lim[f(x+nx)/f(x)]^(1/n)=e^(1/x),(n趋向于0)得e^[f(x+nx)-f(x)]/f(x)*(1/n)=e^(1/x),),(n趋向于0)得lim[f(x+nx)

设f(x)在[1,e]上可导,且0

设F(x)=f(x)-lnx则F(1)=f(1)F(e)=f(e)-1而0