设λ是矩阵A的特征值多项式f(x)=a0x^m a1x^m-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/01 01:10:31
设λ是矩阵A的特征值多项式f(x)=a0x^m a1x^m-1
设X是矩阵A的特征值,则A的逆的特征值?A的转置的特征值?

设a是A的一个特征向量,又X是A的特征值,则有:Aa=Xa,两边同时乘以A的逆矩阵,则:A^(-1)*Aa=A^(-1)*Xa,即a=A^(-1)*Xa,变换位置得:A^(-1)a=1/X*a,由此可

已知实n阶矩阵A具有n个两两不同的特征值.f(λ)=|λE-A| 是A的特征多项式.证明:矩阵f(A)=0

证明:设a1,a2,...,an是A的n个不同的特征值.则存在可逆矩阵P,使P^-1AP=diag(a1,...,an)=B(记为B)即有A=PBP^-1.又f(λ)=|λE-A|=(λ-a1)(λ-

f(x)表示一个k次多项式,A为n阶矩阵,则f(A)的特征值是否全部可用A的特征值表示?

若x1,x2,...xn为A的所有特征值,那么f(A)的所有特征值是f(x1),f(x2)...f(xn),不会有别的特征值不是由f(xi)得到的我是上海交大学生

线性代数的问题,设矩阵A的特征多项式为f(λ),则f(A)=0

f(A)=0的式子两边代表的都是矩阵,0是零矩阵,不是实数0.f(x)中的x取值是实数,f(A)是借用多项式表示的一个矩阵,称之为矩阵多项式,做法是把多项式f(x)的x的幂次都换成A的幂次,其中的常数

设2是矩阵A的特征值,若|A|=4,证明2也是矩阵A*的特征值

由公式AA*=|A|E可以知道,AA*=4E,2是矩阵A的特征值,设特征向量为a那么Aa=2a所以A*Aa=2A*a代入AA*=4E,得到4a=2A*a即A*a=2a那么显然由特征值的定义可以知道,2

设λ=2是可逆矩阵A的一个特征值,则矩阵(13

设α是A的特征值2的特征向量,则Aα=2α又A可逆∴α=2A-1α,即A−1α=12α∴(13A)−1α=3A−1α=32α∴32是矩阵(13A)−1的一个特征值.

设2是矩阵A的特征值,若1A1=4,证明2也是矩阵A*的特征值

2是矩阵A的特征值,则(1/2)是矩阵A^(-1)的特征值.A*=|A|A^(-1)=4A^(-1),则4*(1/2)是矩阵A*的特征值,即2也是矩阵A*的特征值.

设A,B是N阶方阵,f(x)是B的特征多项式,证明f(A)是可逆矩阵的充分必要条件是A与B没有相同的特征值.

设f(x)=(x-b_1)(x-b_2).(x-b_n)即b_1,b_2,...,b_n是B特征根.则f(A)=(A-b_1E).....(A-b_nE)det(f(A))=det(A-b_1E)..

求矩阵特征值特征向量前,计算特征多项式f﹙λ﹚=|λE-A|.

此图是使用中间这一行进行代数余子式展开来计算行列式.此图是对第一行提取(λ-2)来计算行列式.外一则:|rxa1,rya2;sxb1,syb2;|我们先对行提公因子,看到第一行提出r,第二行提出s,提

设A为n阶可逆矩阵,λ是A的一个特征值,则A的伴随矩阵A*的特征值之一是(  )

∵A为n阶可逆矩阵,λ是A的特征值,∴A的行列式值不为0,且Ax=λx⇒A*(Ax)=A*(λx)⇒|A|x=λ(A*x)⇒A*x=.A.λX,故选:B.

设λ=2是可逆矩阵A的一个特征值,则矩阵(A2)-1必有一个特征值等于?

如果(A2)-1意思是(A^2)^-1,则矩阵(A2)-1必有一个特征值等于1/4.设X是λ=2对应的特征向量,则AX=2X,A^2X=AAX=2AX=4X,即A^2X=4X,故得(1/4)X=(A^

设λ是n阶矩阵A的一个特征值,求证:若A可逆,则1/λ是n阶矩阵A-1;的一个特征值

λ是矩阵A的一个特征值,则存在非零向量X,AX=λX,故(1/λ)X=A^-1X,即A^-1X=(1/λ)X,1/λ是n阶矩阵A-1的一个特征值

若A是n阶矩阵,f(x)是一个常数项不为零的多项式,且满足f(A)=0,证明:A的特征值一定

设λ是A的特征值,则f(λ)是f(A)的特征值.而f(A)=0所以f(λ)=0(零矩阵只有0特征值).又因为f(x)是一个常数项不为零的多项式.故必有λ≠0.即A的特征值都不为0.题目是不是有误啊!

设A,B是n阶实矩阵,A的特征值互逆,证明矩阵AB=BA的充要条件为A的特征值都是B的特征值

只需证明:若λ是AB的特征值,则λ也是BA的特征值.分两种情况:(1)λ≠0.由λ是AB的特征值,存在非零向量x使得ABx=λx.所以BA(Bx)=B(ABx)=B(λx)=λBx,且Bx≠0(否则λ

矩阵与变换1.设λ是矩阵A的一个特征值,求证:λ2是A2的一个特征值若A2=A,求证:A的特征值是0或1

λ是矩阵A的一个特征值则λp=Ap两遍同时乘以λ则λ^2p=λAp=A(λp)=A(Ap)=A^2p则λ^2是A^2的一个特征值

设λ是矩阵A为的特征值,则矩阵4A^3-2A^2+3A-2E的一个特征值为

这是定理4A^3-2A^2+3A-2E的一个特征值为4λ^3-2λ^2+3λ-2.

设λ是矩阵A的一个特征值,证λ^2是A^2的一个特征值

λ是矩阵A的一个特征值则λp=Ap两遍同时乘以λ则λ^2p=λAp=A(λp)=A(Ap)=A^2p则λ^2是A^2的一个特征值

设A为n阶反称矩阵,证明:如果 入.是矩阵A的特征值,则 -入.也是A的特征值.

由已知,|A-λE|=0又因为A^T=-A所以有|A+λE|=|(A+λE)^T|=|A^T+λE|=|-A+λE|=(-1)^n|A-λE|=0所以-λ也是A的特征值.

设λ是n阶矩阵A的特征值 则 是A平方的特征值

则λ^2是A平方的特征值证明:设x是A的属于特征值λ的特征向量即有Ax=λx,x≠0等式两边左乘A,得A^2x=λAx=λ^2x所以λ^2是A^2的特征值.