设级数∑(-1)^nan2^n收敛,判断级数∑an的敛散性

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/07 04:00:08
设级数∑(-1)^nan2^n收敛,判断级数∑an的敛散性
求级数∑[(n+1)/2n]^(1/n)敛散性

发散,用收敛的必要条件判断

设{an}是首项为1的正数项数列,且(n+1)an+12-nan2+an+1an=0(n∈N*),经归纳猜想可得这个数列

∵(n+1)an+12-nan2+an+1an=0,∴(n+1)an+1=nan或an+1+an=0,∵{an}是首项为1的正数项数列,∴(n+1)an+1=nan,∴an+1=nn+1an,即an+

设lim un=a,则级数(u(n)-u(n-1))为多少啊

∵sn=(u(n)-u(n-1))+(u(n-1)-u(n-2))+.+(u(1)-u(0))=u(n)-u(0)∴s=limsn=a-u(0)再问:结果为u1-a再答:结果u1-a印错了

设数列{nan}收敛,且级数∑an收敛,证明级数∑n(an-an-1)也收敛

先从1到N求和:∑n(an-an-1)=NaN-∑an-1这里求和都是从1开始到N再令N趋于无穷,前面的收敛,后面部分也收敛所以整体收敛

设级数∑(an)^2收敛 则级数∑an/n是收敛还是发散

若∑(an平方)收敛,证明∑(an/n)必收敛证明,∑(an)^2收敛,∑(bn)^2=∑(1/n)^2收敛(p级数p>1时收敛)所以∑|anbn|≤∑(1/2)((an)^2+(bn)^2)收敛(因

设函数项级数Σ(ln(1+n^2x^2)/n^2),证明:

因为是正项级数,用比值判别法(达朗贝尔定理):求第n+1项和第n项比值的极限a.需要用到咯比达法则,可以得出x在0-1之间时,这个比值极限才会小于1,级数收敛

设lim(n→∞)na_n 存在,且级数∑(n=1→∞) n(a_n-a_(n-1))收敛,证明:级数∑(n=1→∞)a

设级数∑n(an-a(n-1))的前n项和为:σn设级数∑an的前n项和为:Sn则:σn=nan-S(n-1)-a0S(n-1)=nan-σn-a0limS(n-1)=lim(nan)-limσn-a

设Un>=0,且{NUn}有界,证明:级数∑Un^2收敛(n从1到无穷)

设NUn再问:高手,下边也写出来呗,要步骤,这部分没看呢,要考试啦!再答:∑1/N^2就是收敛的啊

高数 设U(n) 不等于 0 (n=1,2,3,,) 且 (n→无穷)lim n/U(n) =1,则级数(n=1)∑[(

收敛是因为Sn=1/U(1)+1/U(2)-1/U(2)-1/U(3).+(-1)^(n+1)/U(n)+(-1)^(n+1)/U(n+1)注意抵消规律有Sn=1/U(1)+(-1)^(n+1)/U(

设级数∑An收敛,且lim(nAn)=a,证明∑n(An-A(n+1))收敛

马上写来再答:设级数∑An收敛于bn(An-A(n+1))=nAn-(n+1)A(n+1)-A(n+1)Sn=∑(k=1,n)[kAk-(k+1)A(k+1)-A(k+1)]=A1-(n+1)A(n+

设级数∑(0到无穷)an(x-1)∧n的收敛半径是1,则级数在x=3点的敛散性是

级数∑(0到无穷)an(x-1)∧n的收敛半径是1,则级数在x=3发散再问:怎么解的?能给个过程吗?再答:没有过程:收敛半径是1|x-1|

判断级数敛散性∑(-1)^n

级数发散,当n趋于无穷时级数∑(-1)^n无限次的依次重复为-1和0,不是一个确定的值,因此级数发散.另外根据交错级数的审敛法则也可以判断级数不收敛.

设级数∑(n=1)Un收敛,且∑Un=u,则级数∑(Un+U(n+1))=?

∑(Un+U(n+1))=∑Un+∑Uk=(∑Un+∑Uk)-U1=2∑Un-U1=2u-U1再问:答案是2u-U0,U0好奇怪。再答:这个答案不应该是2u-U0.是2u-U1

级数收敛设级数∑Un(n=1,2,…,∞)收敛,证明∑(-1)^n*Un/n不一定收敛,(-1)^n指-1的n次方.

只要举出反例即可.令U(n)=(-1)^n/ln(n+1)(+1是为了保证n=1时有意义),则U(n)是趋于零的交错数列,所以由Leibnitz判别法知∑U(n)收敛.(-1)^n*U(n)/n=1/

设数列{nan}收敛,级数∑n(an-an-1)也收敛,证明级数∑an收敛

按定义将∑n(an-an-1)展开,找到三个级数之间部分和的关系再答:再答:不用客气^_^